Please, consider giving your feedback on using Lanfrica so that we can know how best to serve you. To get started, .
X

FastText.zip: Compressing text classification models

We consider the problem of producing compact architectures for text classification, such that the full model fits in a limited amount of memory. After considering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quantization artefacts. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy.


Link Other Links

CONNECTED RECORDS

LANGUAGES

TASKS

TAGS